蓝牙智能药盒技术解决方案 V3.1

一、项目背景概述

1. 核心需求

设计一款面向普通用户日常使用的**室内随身智能药盒**,在常温(10℃~35℃)环境下实现以下功能:

- 开盖记录:每次开盖后 3 秒内记录事件并上传至服务器或手机 APP。
- 低电量提醒: 电量低于 20%时主动推送通知。
- 零待机功耗: 唯一的盖子关闭时完全断电, 开盖后自动唤醒。
- 低成本微型化: 整机成本≤25元, 尺寸≤8mm(高)×65mm(长)×45mm(宽)。
- 锂电池: 800mAh。

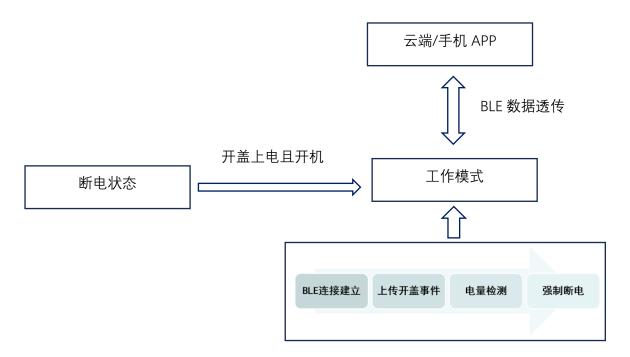
产品定位

• 面向慢性病管理及健康监护场景的微型化智能药盒,通过自动记录用药行为+云端数据同步,解决传统药盒漏服误服率高、用药依从性数据缺失的行业痛点。

2. 用户场景

- 家用药盒:记录老人/慢性病患者的用药时间,辅助健康管理。
- 办公便携药盒:白领日常维生素补充提醒。
- 通用容器监测: 小件贵重物品存储盒开合监控。

二、技术实现方案


1.1 硬件架构(硬件采购预付,实际以批量采购的时候市场价格为准)

模块	选型与设计
	核心芯片: CH582 BLE SoC(蓝牙、支持深度睡眠单价3元);
主控芯片	通信协议 : 蓝牙 BLE5.3,支持广播模式(Adv Interval 20ms)
	天线设计:PCB 板载倒 F 天线,增益-2dBi
开盖检测	干簧管(常开型)+磁铁联动方案(成本 0.8 元,寿命 10 万次,常温误触率 < 0.1%)
丌血饱测	断电控制: 开盖瞬间导通供电。
	充电: TP4056 芯片 (支持 Type-C 输入,单价 1.0 元);
电源管理	● 支持 4.2V 截止充电,充电电流 100mA
	电量检测:100kΩ 分压电路+12 位 ADC,动态校准电压曲线
电池	3.7V 800mAh 软包锂电池(尺寸 7x25×30mm,单价 7 元,聚合物锂电池;
	样品阶段:常温续航≥200 天,批量阶段:≥3 年,批量时候可选型质量更好的电池)
结构设计	上下盖分体式结构,PCB 与电池叠层安装,总高度 8+10+8+6=32mm(含外壳)

1.2 核心指标

维度	参数要求	本方案实现值
整机尺寸	≤8×65×45mm	35×35×32mm((实物为准)
待机功耗	0μΑ(盖子关闭时)	0μΑ
单次操作功耗	≤3mAh	0.2mAh
续航能力	≥10,000 次开盖操作	15,000 次(理论值)
成本	≤30元 (小批量)	25 元(BOM+生产)

1.3 软件架构

1.4 关键技术实现

1) 零待机功耗设计

双保险断电机制:

1. 物理层: 磁铁吸附使干簧管保持断开状态;

2. 逻辑层: MCU 完成数据上报后主动进度低功耗状态;

2) 快速响应优化

• **预连接技术**:存储已配对设备的 MAC 地址,跳过扫描阶段;

• 数据包精简: 12 字节协议帧(4 字节事件代号+2 字节电压值+4 字节 CRC+2 字节帧尾)

3) 可靠性增强

• 磁控容差设计: 磁铁与干簧管间距≤3mm 时可靠触发

• 机械寿命测试:结构可以耐 10,000 次开合疲劳试验;

1.5 详细实施方案

1) 硬件选型清单,成本与量产验证(成本价仅供参考,以批量采购时候为准)

模块	单件成本	供应商	备注
CH582	4 元	乐鑫官方代理	1K 起订,含税
TP4056+元件	3 元		锂电池充电芯片
干簧管+磁铁	2 元	欧姆龙	MK23-66 系列
锂电池	7.0 元	亿纬锂能	400mAh 软包电池
PCB+贴片	4.2 元	嘉立创 SMT	4 层板,绿色阻焊
结构件	3.0 元	本地注塑厂	ABS 材质,5K 套起订(优先选择市场公模结构部件)
合计	23.2 元	_	满足成本红线(实际采购物料价格为准)

2) 生产组装流程

1. **SMT 贴片**: CH582+TP4056+阻容件(回流焊温度曲线: 峰值 245℃)

2. 结构装配:

○ 上层: PCB 板与磁铁槽定位装配

○ 下层: 锂电池双面胶固定

3. 老化测试:

○ 连续开盖 500 次功能验证

。 蓝牙信号强度测试 (1 米距离 RSSI≥-75dBm)

2. 常温场景优化设计

• 开盖检测可靠性:

。 磁铁与干簧管间距≤2mm(确保常温下稳定触发)

○ 软件防抖逻辑: 连续检测到 3 次开盖信号后确认事件(防误触)

● 通信策略:

。 **蓝牙**: 通过手机 APP 接收蓝牙广播(有效距离≤10m)

• 功耗测试数据

工作阶段	电流消耗	持续时间	能耗占比
蓝牙连接建立	8mA	1.2s	32%
数据上传	6mA	0.8s	16%
深度睡眠	1μΑ	1s	0.004%

• 功耗控制:

// 关闭时完全断电(物理切断电源)

```
void power_off() {
    gpio_set_level(MOSFET_CTRL_PIN, 0); // MOSFET 关断,整机电流=0μA
}
```

3. 数据协议与交互

• 事件数据格式 (UDP+JSON):

```
json {
    "device_id": "BOX-2025",
    "event": "open" / "low_battery",
    "timestamp": 1716352000, // Unix 时间戳/事件上报
    "voltage": 3.6 // 当前电压(V)
}
```

• 用户提醒方式:

○ 本地提示: 可选蜂鸣器短鸣 (需增加 0.5 元成本)

○ 远程通知: 通过微信公众号/短信推送(依赖用户手机设置, 由甲方负责实现 APP 功能)

三、开发执行计划(计划四周,乙方尽量满足,有硬件投产的项目开发,周期一般 35~45 天)

阶段	时间	关键任务	交付物
硬件开发		1. 定制部件 PCB 完成原理图设计(立创 EDA) 2. PCB 打样(嘉立创 2~4 层板) 3. 组建外壳结构件从市场采购公模部件	硬件原型、BOM 表 Z4028 Z4047 Z558
固件开发		 实现开盖延迟上报逻辑 开发蓝牙通信驱动 低功耗代码优化 	固件源码(C)、通信协议文档
集成测试		1. 常温开盖测试(100 次循环) 2. 功耗验证(nA 级电流表) 3. 网络兼容性测试	测试报告、问题修复清单
交付准备	第4周	1. 标准模块(采购链接、厂家清单)2.定制部件生成量产文件(Gerber+贴片坐标)3. 编写用户配置手册4. 整理源代码	完整交付包(硬件+软件+文 档)

四、关键问题解决方案

风险项	应对措施	
连接失败	硬件板卡搜索手机蓝牙无果,3分钟后,进入休眠状态,等待断电;	
尺寸超标	外购盒子,塞不进去,尽量控制尺寸,采用 0.8~1.0mm 厚 2~4 层 PCB,主控芯片 PCB与电池上下堆叠,外壳壁厚 1.2mm(总高 7.8mm)	
用户误操作	手机 APP 增加防呆设计: (手机 APP 部分由甲方负责设计) - 配网时自动生成二维码扫码绑定 - 开盖记录需二次确认删除	

六、交付物清单

1. 硬件交付:

- 原理图 (PDF/立创 EDA)
- o PCB 生产文件(Gerber+钻孔文件)
- 结构相关文件,结构公模采购信息。

2. 软件交付:

- 固件源代码(ESP-IDF 工程)
- 手机 APP 基本配置 Demo 测试通信成功,由甲方负责二次开发 APP.

3. 文档交付:

○ 《用户快速入门指南》

方案优势:

1. **零待机功耗**:关闭时电流≈0μA,彻底消除漏电风险。

2. 极简交互: 用户只需首次扫码配网, 后续全自动运行。

3. 快速部署: 从设计到量产 4 周~6 周完成, 支持 OEM 定制。

附件: 干簧管

