OpenPAYGO

EnAccess
Open Source PAYGO Token

Software Part
Documentation for the example implementation

PaygOps §) Ehacoess

Last-Mile Management System ~oundation

o)



10/Sep/2019 g) E“r‘TA‘C(:e‘ss @ PaygOps

| Last-Mile Management System

License

While projects financed by EnAccess usually use an MIT license for maximum openness, this
project is using an Apache 2.0 license that adds the additional restriction over MIT license that
changes made to the code have to be documented when used in other projects. We have
chosen to do this to avoid having projects using this token system with modification that break
compatibility with no mention that they are not compatible, hence leading to confusion.

How to use the code provided:

The Example C implementation for a Device:

The “Example_Device_Implementation_C” folder contains code intended to make it very easy
to implement the system on a device. It is a working example that implements a device
“simulator” and shows how the system would work on it. To use it on the real device, just
replace the “simulator” functions (such as the BlinkRedLed function or the GetKeyPressed
function) by the real function used in your device.

The folder contains:

% The “main.c” file that presents an example of a complete PAYG firmware that can be
implemented on the device

% The “opaycode_system” folder, containing a device-neutral C implementation of the
code system, with the code generation and code decoding functions.

The “device_simulator” folder, containing “simulator” implementations of the functions
that would be needed on a real device (for example the BlinkRedLed function only
prints “The Red LED Blinked” on your computer screen instead of actually blinking an
LED.

R
*

The Python full system implantation and security tests:

The “Example_Full_System_Implementation_Python” folder contains code intended to
showcase how the full system of a server and a device would work together to generate tokens
and decode them. It provides a concrete scenario tests and allows to generate tokens of any
value for any device (given that the device uses the same key as the server).




10/Sep/2019 g) E“r‘TA‘C(:e‘ss @ PaygOps

| Last-Mile Management System

The server and device simulator both have a print_status() function that can be used to print
their internal state, this should be very useful for debugging when implementing into the
device. The whole code is made for use with Python 3 and the tests can be run as it is.

The folder contains:
A “shared.py” file containing functions shared between encoder and decoder

% A “encode_token.py” and “decode_token.py” containing respectively the function to
generate tokens and to decode tokens.

A “server_simulator” folder that contains an example implementation of a server

A “device_simulator” folder that contains an example implementation of a device

A “tools” folder with a utility to generate random keys

An “example” folder that contains test scenarios

A “security” folder that contains example attacks (see the “Security Audit” for context)

K7 7 K7 7 K7
0“ 0.0 0“ 0.0 0“

Important Note: A secret key was here chosen randomly for the example. This secret key
ensures that someone knowing the algorithm cannot generate tokens for all your devices if he
does not have that secret key. For more security in the actual implementation we should use a
different key that you choose yourself and keep private for everybody except the person who
compiles the firmware in the device and the person who sets up the server.

How to quickly test that a device implementation
is functional:

This test (scenario 1) allows to quickly assess whether an implementation seems to work or
not and help in the debugging process, even if it is by no mean exhaustive. For more tests, you
can check the test scenarios 2 and 3 in the full system implementation example.

1. Setup the device with the starting code 123456789 and the model as well as with the
following secret key: {0xa2, 0x9a, 0xb8, 0x2e, Oxdc, 0x5f, Oxbb, Oxc4, Ox1e, 0xc9, 0x53, Oxf,
0x6d, Oxac, 0x86, 0xb1}. We assume that the device has a count of 0. DO NOT USE THAT KEY IN
PRODUCTION, THIS IS JUST AN EXAMPLE.




10/Sep/2019 g) E“HLA‘Cce‘ss @ PaygOps

| Last-Mile Management System

2. Press ™' to start entering the token and enter the token “123456789"” into the device, the
Red LED should blink 10 times showing that the token is not valid. Invalid codes are the codes
that take the longest to process by design.

3. Press *' to start entering the token and enter the code “662486790", this should
activate the device for 1 day (Add Time) and the Green LED should blink twice to show it is
valid.

4. Press ™' to start entering the token and entering the code “662486790" again, this

should not change the device activation and the Red LED should blink 10 times to show that
the token has already been entered properly.

5. Press ™' to start entering the token and enter the code “927706818", this should activate
the device for an additional 29 days days (Add Time) and the Green LED should blink twice to
show it is valid.

6. Press ™ to start entering the token and enter the code “942433796", this should activate
the device for 7 days (Set Time), removing 23 days from the current status, and the Green LED
should blink twice to show it is valid.

7. Press ™' to start entering the token and enter the code “650975787”, this should disable
PAYG on the device (it should now be active forever) and the Green LED should blink 5 times to
show it is valid.

8. Press ™' to start entering the token and enter the code “592185789", this should enable
PAYG again on the device and set it to 0 days (not active). and the Green LED should blink 2
times to show it is valid.




