EE 709 - Testing and Verification
Combinational Test Generation
Project Report

Arun. C (10307938)
Siddharth. Mohta (10307937)

Dept of Elect Engg.
I[IT-Bombay

May 2, 2012

Project Statement

Objective of this project is to come up with a test generation program that
can generate test patterns for combinational circuits.

1. Name : atpgGenerator

2. Input : Verilog Structural Netlist.

3. Output : Test Pattern file. Runtime info dumped to console.
4. Language : C++

5. Interface : Command Line.

6. OS/Platform : Linux (Any variant)

1 Approach and Algorithm

Basic D Algorithm is used for test generation. Only verilog built in primi-
tives such as and, or, nand, not, nor, buf etc are allowed in the input file.
The tool parses the netlist, build internal data structures, runs the algo-
rithms and prints the resulting fault patterns to an output file. Detailed
run time information is output to the console which can be captured using
the unix tee command.

A “line” in this work stands for a fault line. A line is uniquely deter-
mined as component_name+_+net_name.
For eg: The text-line, or_gatel or(outl, inl, in2); in verilog netlist will be
parsed as component or_gatel, and the fault-lines or_gatel_outl, or_gatel_inl
and or_gatel_in2.
Separate test patterns (SA-0 and SA-1) are generated for each of these lines
independently. Thus this scheme uniquely identifies the different fault lines
even in case of multiple fanouts from a component. If there is only one to
one connection between two components, like
invl not(wl, w2);
inv2 not(w2, w3);
this also will be parsed to 4 fault-lines - invl_wl, invl w2, inv2_w1, inv2_w2.
Here invl_w2 and inv2_w2 is the same fault line. ie the pattern generated for
both the cases may be the same. However in our current work, tool treats
these are different fault lines itself and generates patterns independently.
This is redundancy and we have not optimized this aspect. It wll be taken
up as future enhancement.

The basic algorithm used is as explained as follows:

There are two main functions, Justify() and Propagate(). Justify() justifies
a given line with a given value.

Justify(1, val)
begin
set 1 to val
if 1 is a PI then return
/* 1 is a gate output */
c = controlling value of 1
i = inversion of 1
inval = val ~ i
if (inval = c¢’)
then for every input j of 1
Justify (j, inval)
else
select one input (j) of 1
Justify (j, inval)
end

Propagate() propagates the given value to any of the PO.

Propagate (1, err)
/* err is D or D’ */
begin
set 1 to err
if 1 is PO then RETURN
k = fanout of 1
C controlling value of k
i inversion of k
for every input of j of k other than 1
Justify (j, ¢’)
Propagate (k, err = i)

end
Now the algorithm traverses in the data structure as follows.

GenerateTP ()
begin
set all values to x
Justify (1, v)
if (v = 0) then Propagate (1, D)
else Propagate (1, D’)
end

! Adapted from the lecture notes of EE-709 by Prof. Virender Singh

2 Implementation aspects

The software is planned to 3 different sections, front end (verilog parser),
data-structures and the atpg algorithm itself.

1. Verilog Parser (Front End) - Parses the verilog input file using the reg-
ular expressions available in boost library. (class VerilogLineParser).
Reads the file line by line and builds the necessary datastructures.

2. Datastructure Our datastructure consists of nodes, lists and maps.
Explicit usage of graphs is not done. An associative-table graph is
accomplished using a set of maps (hash arrays).

Each component is stored in the class VerilogNode.

It holds the following information - component_name, nodelD, level,
type (AND/OR/NOT/INPUT/OUTPUT etc), cv (controlling value),
inv_parity (inversion value), num_inputs, num_outputs, input_list(list
of nets connected to input pins), output_list (list of nets connected to
output pins), input_list_value (maps input pin to value (1/0/X/D/Dbar)),
output_list_value (maps output pin to value(1/0/X/D/Dbar).)

Each fault line is another class(class LineType) having the members -

name, value, lineDirection, lineAttribute (PI/PO/INTERNAL_-WIRE),
isVisited attribute.

3. Following associative tables (maps or hash arrays) are used to traverse
through the graph. These are declared globally.

linemap : line to node.

line_to_faninline_map : line to driver line.

line_to_fanoutline_map : line to fanoutlines. (driven lines).

line_to_inputline_map : o/p line to i/p lines of the component.

e line_to_outputline_map : i/p line to o/p lines of the component.

4. Other helper functions 2 - PrintPTPatterns() [prints the patterns at PI],
EqualizeFaninFanoutNets() [equalizes the values of the fanout nets to
the fanin nets|, UpdateMaps() [Updates the associative-tables|, Up-
dateLineList() [Updates the list of fault-lines if needed to the current
working line| etc.

2QOther functions used in the program are not specified. The meaning and usage can
be easily figured out by looking at the code.

3 Compilation, Usage and Dependencies

Compile using shell script, compile.bash 3

The program has a dependency on boost libraries 4, for regular expression
parsing. Boost libraries are going to be a part of next standard of C++
(C++-11)

The compiler used for this work is GNU-C++ complier (g++) - version
4.5.2. OS is Linux (Ubuntu-11.10). However it should work with any other
standard C++ compiler and OS, as there is no OS/compiler dependencies.
Usage:

unix-prompt:-$./atpgGenerator inputfile.v | tee inputfile.log

Result is inputfile.v_fault.lst - Gives the list of fault patterns.

4 Programming Testing

The program has been tested for the following 4 circuits. Circuits are shown
in Appendix-1 of this report. For each circuit verilog description is provided
and manually checked the output patterns generated. Circuit 4 is a recon-
vergent circuit. Program is able to come up with test patterns for this circuit
successfully.

5 Future Work

We need to apply the program to more circuits and figure out the bugs and
potential miss-outs and errors.

Need to generate test patterns for ISCAS circuits. As such we have not
attempted in the current phase because we dont have a golden response to
compare with. ISCAS ¢880a ckt has 60 primary inputs and is impossible to
check the response manually. We need a fault simulator to verify the test
patterns generated.

Entire code has to be restructured and more powerful features and classes
need to be used. Currently there are lot of workarounds to reach this stage.
Need to plan properly and rewrite the program.

Try alternate and better algorithms, compare efficiency, performance etc.

>k >kkosk sk ok kokoskoskok kok

3There is no need of an elaborate make program. Plain C++ compilation will do
4www.boost.org

6 Appendix 1 - Results

andl
inl
B wil orl
in2
out3

in3

Circuit-1
inl—j
in2—

Circuit-2

Figure 1: Circuits 1&2

and2

Circuit -3

nand2

Circuit -4

Figure 2: Circuits 3&4

The sample circuits 2, 4 are shown. (verilog code and output pattern
file) °

// Sample ckt-2.
module combo(outl, out2, inl, in2);
output outl;
output out2;
input inl;
input 1in2;
wire wl, w2;

and and1(wl, inl, in2);

not notl(outl, wil);

or orl(w2, inl, in2);

not not2(out2, w2);
endmodule // combo

Result:

| FaultLine | Type | input_in2 | input_inl |
T not2w2 | SA-1 | o1 01
T not2u2 | SA0 | Xl 11
T not2out2 | SA-1 | 11 X1
e not2_out2 | S4-0 | o1 01
s oriin2 | sa1| ol 01
e oriin2 [sa0 | 1l 01
IR orint | SA1| o1 01
Y oriint | SA0 | o1 11
Y oriw2 | sat | o1 01
w0 oriw2 | sa0 | X1 1
u notiwl | Sai | o1 x|

"Repetetions in the fault lines are there. Currently ignores as explained in sec-1,
Approach and Algo

12 | notl_wl | SA-0O | 1 | 1|

13 | notl_outl | SA-1 | 1] 1|
e notiowtt | SA0 | X1 01
s andiin2 | SA1 1 ol 1
e andiin2 | SA0 | 11 1]
o andiint | SA11 11 01
Y andiint | SA0 | 11 1l
T andivl | SA-L | o1 x|
T amdivi 1S40 | 11 11

// Sample ckt-4 - Reconvergent ckt.
module combo(outl, inl, in2);
output outil;
input inl;
input 1in2;
wire wl, w2, w3;

nand nandl (w1, inl, in2);

nand nand2 (w2, inl, wl);

nand nand3 (w3, wil, in2);

nand nand4 (outl, w2, w3);
endmodule // combo

Result:

| FaultLine | Type | input_in2 | input_inl |
T handd w3 | SA-1 | 11 01
T nandd w3 | SA-0 | 11 11
T nandd w2 | Sa-1 | ol 11
Y nandd w2 | SA0 | o1 01

5 | nand4 _outl | SA-1 | 0 | 0 |

6 | nand4 _outl | SA-0 | 0 | 1|
T nands in2 | SA-1 | o1 01
el hands _in2 | SA-0 | 11 01
e nends wi | Sa-1l 11 1]
Y nands wi | sa0 | 1l 01
u nands w3 | Sa-1 | 11 01
T nands w3 | SA-0 | 11 11
Y nand2 wi | SA-1 | 11 1]
S nand2 wi | SA0 | ol 11
s nand2 ini | SA-1 | o1 01
el nand2 ini | SA-0 | ol 11
Y nand2 w2 | SA1 o1 1
Y nand2 w2 | SA0 | o1 01
e nandi in2 | SA-1 | ol 11
T pandi _in2 | SA-0 | 11 1]
S pandi int | SA-1 | 10 01
T panat _int | SA-0 | 11 1]
T pandi wi | SA1l 11 1]
B nandi wi|sao | 1l 01

